DUROX // MICRON

OX-A

Natureloxalbehandlung

OX-A ist eine Natureloxalbehandlung von Aluminium gemäß den Vorgaben der Normen MIL-A-8625 Typ II und ISO 7599.

Durch die OX-A-Behandlung werden die behandelten Teile gegen Korrosion und Verschleiß geschützt. Die Korrosionsbeständigkeit der mit OX-A eloxierten Teile übertrifft 336 Stunden im Salzsprühnebel gemäß MIL-A-8625.

KORROSIONSBESTÄNDIGKEIT

Die OX-A-Schicht schützt das Basismaterial gegen Korrosion und widersteht länger als 336 Stunden im Salzsprühnebel gemäß den Vorgaben der Norm MIL-A-8625.

WIRTSCHAFTLICH

Gegenüber anderen Eloxalbehandlungen von Aluminium ist OX-A kostengünstiger, da sie einen höheren Wirkungsgrad des Prozesses garantieren kann.

VERSCHLEISSFESTIGKEIT

Die bei der OX-A-Behandlung gebildete Aluminiumoxid-Schicht gewährleistet eine gute Beständigkeit gegen Kratzer und schützt bei leichtem Verschleiß.

FARBVARIANTE SCHWARZ UND BLAU

Die OX-A-Behandlung kann mit einer tiefschwarzen oder blau Farbe pigmentiert werden, um die Farbe auf allen Aluminiumlegierungen zu vereinheitlichen.

VARIANTE FÜR GERINGEN ABRIEB

UUm den Reibungskoeffizienten zu senken und Antihafteigenschaften zu verleihen, kann die OX-A-Behandlung mit PTFE-Nanopartikeln imprägniert werden.

TECHNISCHE SPEZIFIKATIONEN

ZUSAMMENSETZUNG

Die OX-A-Behandlung verwandelt das Basisaluminium in eine kompakte Aluminiumoxid-Schicht. Die Zusammensetzung hängt folglich in erster Linie von der Ausgangslegierung ab.

Al	0	S	FREMDSTOFFE
20-40%	50-70%	3-5%	In Abhängigkeit von der Legierung

NORMEN ANWENDBAR

TECHNISCHE PRODUKTNORMEN

ISO 7599 MIL-A-8625 | Type II

ROHS-KONFORMITÄT

Erfüllt die RoHS-Vorgaben. Es sind keine Substanzen mit Verwendungsbeschränkungen jenseits der tolerierten Höchstkonzentration vorhanden.

REACH-KONFORMITÄT

Erfüllt die REACh-Vorgaben. SVHC sind nicht in Mengen vorhanden, die 0,1 % im Gewicht überschreiten.

ELOXIERBARE LEGIERUNGEN				
KNETLEGIERUNGEN	KORROSIONS BESTÄNDIGKEIT	MAXIMALE STÄRKE		
Mit hohen Prozentsätzen von Kupfer oder Zink	$\star\star\star \star \star \star$	* * * ☆		
Andere Legierungen	****	****		
GUSSLEGIERUNGEN				
Legierungen mit Si>8% oder Cu>2%	* * * * *	* \$ \$ \$ \$		
Druckgusslegierungen mit Si<8% oder Cu<2%	$\star\star \star \Leftrightarrow \Leftrightarrow \Leftrightarrow$	* \$ \$ \$ \$		
Andere Legierungen	$\star\star\star \diamond \diamond$	$\star\star\star \diamond \diamond$		

BEHANDLUNGSSTÄRKE					
STANDARDSTÄRKE	TOLERANZ				
15 µm	± 5 µm				
Gleichmäßige Stärke auf der gesamten Außenfläche.	Geringere Stärke in den Löchern.				
Die Behandlungsstärke wächst um 30% außerhalb ur 70% innerhalb der Oberfläche des Aluminiumteils.	nd um VOR DER NACH DER BEHANDLUNG BEHANDLUNG				

Die Behandlungsstärke wächst um 30% außerhalb und um 70% innerhalb der Oberfläche des Aluminiumteils. Das radiale Zunahme der Maße entspricht folglich 30% der Behandlungsstärke.

ÄSTHETISCHER ASPEKT

Mattglänzendes Aussehen mit hellgrauer Farbe. Der Farbton ist von der Basislegierung abhängig. Gibt die Morphologie des mechanisch bearbeiteten Teils wieder.

Möglichkeit der Schwarzfärbung in der OX-AN-Version

VERSCHLEISSBESTÄNDIGKEIT

Beständigkeit gegen leichten Verschleiß und Kratzer.

In Fall höherer Anforderungen kann mit den OX-HS- und OX-W-Behandlungen eine sehr hohe Verschleißbeständigkeit erreicht werden.

REIBUNGSZAHL

Die OX-A-PTFE-Variante umfasst eine Imprägnierbehandlung der Eloxierschicht mit nanometrischen PTFE-Partikeln. Diese Imprägnierung ermöglicht den Erhalt einer selbstschmierenden Antihaft-Oberfläche mit geringem Reibungskoeffizienten.

KORROSIONSBESTÄNDIGKEIT

Mit der OX-A-Behandlung kann eine hohe Korrosions- und Oxidationsbeständigkeit erreicht werden. Sie übertrifft die Anforderungen in puncto Beständigkeit beim beschleunigten Korrosionstest im Salzsprühnebel gemäß den Vorgaben der Norm MIL-A-8625F Typ II.

Salzsprumeber gemais den vorgaben der Norm Mitz-A-00251 Typ II.				
KORROSIONSBESTÄNDIGKEITSWERT	BASISMATERIAL			
≥336 Stunden	Legierung 6000			
NSS NACH MIL-A-8625F 3.7.1.2				

CHEMISCHE BESTÄNDIGKEIT

Richtwerte der Umweltverträglichkeit.

Die tatsächliche Umweltbeständigkeit muss in jedem Fall vor Ort getestet werden.

- ✓ Kohlenwasserstoffe (z. B. Benzin, Diesel, Mineralöl, Toluol)
- Alkohole, Ketone (z. B. Äthanol, Methanol, Aceton)
- Neutrale Salzlösungen (z. B. Natriumchlorid, Magnesiumchlorid, Meerwasser)
- Oxidierende Säuren (z. B. Salpetersäure)
- X Konzentrierte Säuren (z. B. Schwefelsäure, Salzsäure)
- 🗴 Verdünnte Basen (z. B. verdünntes Natriumhydroxid)
- Oxidierende Basen (z. B. Natriumhypochlorit)
- X Konzentrierte Basen (z. B. konzentriertes Natriumhydroxid)