NIPLATE® 500 PTFE
Electroless Nickel Plating with PTFE

Niplate 500 PTFE is a composite coating of high phosphorus (10-13%) electroless nickel containing 25-35% of PTFE particles.

PTFE nanoparticles are co-deposited in the matrix during deposition of the nickel film. The film is thus composed of a nickel-phosphorus alloy matrix in which the PTFE particles are uniformly dispersed.

PTFE is a polymer with certain specific properties. It is completely chemically inert and immune from attack by almost all chemical compounds. It offers excellent surface smoothness, a low friction coefficient, and non-stick properties.

The Niplate 500 PTFE coating thus combines the intrinsic properties of electroless nickel and PTFE. It offers hardness values on a par with steel, together with low friction coefficient and releasability characteristics.

The low friction coefficient recommends the material for applications with sliding parts, such as solenoid valve tube assemblies and moving cores, and technical gas pressure reducer components. The non-stick property makes the coating suitable for use in the plastic moulding and forming sector, and in metering and control devices for viscous liquids, adhesives, and hot water.

Tube assemblies of water solenoid valves coated with Niplate 500 PTFE, electroless nickel-PTFE composite

LOW FRICTION COEFFICIENT AND NON-STICK PERFORMANCE

Thanks to the high contents of uniformly distributed PTFE particles, the coating offers excellent non-stick properties and a very low friction coefficient (0.08 ÷ 0.12) without lubrication.

UNIFORM THICKNESS

Uniform and constant coating thickness over the entire substrate, including holes: ideal for precision machined parts with tight tolerances.

CAN BE APPLIED ON VARIOUS METALS

All metals commonly used in mechanical engineering practice can be coated: alloys of iron, copper, and aluminium.

Articles plated with NIPLATE 500 PTFE

Articles plated with NIPLATE 500 PTFE

SEM Cross-section of NIPLATE 500 PTFE plating
SEM Cross-section of NIPLATE 500 PTFE plating

TECHNICAL SPECIFICATIONS

Composition and applicable standards

Composition
The Niplate 500 PTFE coating is composed of two layers of identical thickness: the first layer is medium phosphorus electroless nickel, and the second is high phosphorus electroless nickel with PTFE particles.
FIRST LAYER (40-60% OF TOTAL THICKNESS)NiP
91÷95%5÷9%
SECOND LAYER (40-60% OF TOTAL THICKNESS)MATRIXPARTICLES
NiPPTFE 300nm
87÷90%10÷13%25÷35% vol.
Composite coating with electroless nickel matrix and PTFE particles.
NSF 51 certification
NSF 51 certification – Food equipment material.
RoHS compliance
RoHS compliant. No restricted substances present in amounts greater than the maximum tolerated concentrations.
REACH compliance
REACH compliant. No SVHCs present in amounts higher than 0.1% by weight.

Coatable metals

Iron alloysCharacteristics
Carbon steelAdhesion★★★★★
Corrosion resistance★★★☆☆
Stainless steelPre-treatmentSand blasting
Adhesion★★★★☆
Corrosion resistance★★★★★
Case hardened steelPre-treatmentSand blasting
Adhesion★★★★☆
Corrosion resistance★★★☆☆
Nitrided steelPre-treatmentSand blasting
Adhesion★★★☆☆
Corrosion resistance★★★☆☆
Copper alloysCharacteristics
Brass, Bronze, CopperAdhesion★★★★★
Corrosion resistance★★★★★
Aluminium alloysCharacteristics
Machining alloysAdhesion★★★★☆
Corrosion resistance★★★★☆
Foundry alloysAdhesion★★★★☆
Corrosion resistance★★★☆☆
Titanium alloysCharacteristics
Pure titanium and titanium alloysPre-treatmentSand blasting
Adhesion★★★★☆
Corrosion resistance★★★★★

Coating thickness and aesthetic appearance

Coating thickness
Typical thicknessTolerance
15µm±3µm
Uniform thickness over the entire external and internal surface
Absence of tip effect typical of galvanic coatings
Aesthetic appearance
Grey gunmetal appearance due to high contents of PTFE particles. Reproduces the morphology of the machined part.
Option of matt finish (sand blasted, shoot peened, or grit blasted)
In case of hardening treatments carried out at 260-280°C, discolouration of the coating may occur with possible localized brown rings.

Tribological properties

Hardness
The surface hardness of Niplate 500 PTFE varies in accordance with the hardening heat treatment performed after deposition of the coating.
Hardness valueHeat treatment
250±100HV
Hydrogen embrittlement relief at 160-180°C for 4h
300±100HV
Hardening at 260 -280°C for 8h
Wear resistance
Niplate 500 PTFE features high wear resistance in the presence of non-abrasive conditions and in applications with low local loads. It is not suitable for abrasive wear applications. Consequently, the Taber Abraser test wear values tend to be high.
Guideline wear value, TWI-CS10Heat treatment
The lower the number, the higher the performance – ASTM B733 X1 – Taber Abraser wear test – CS 10 abrasive wheels – 1 kg load
33±2 mg / 1000 cycles
Hydrogen embrittlement relief at 160-180°C for 4h
21±2 mg / 1000 cycles
Hardening at 260 -280°C for 8h
Friction coefficient
Dynamic dry friction coefficient value
0.08 ÷ 0.12
Thanks to the high PTFE particle contents, the Niplate 500 PTFE coating offers a very low dry dynamic friction value usually ranging from 0.08 to 0.12 depending on the antagonist material.

Chemical properties

Corrosion resistance
The corrosion protection of Niplate 500 PTFE, measured by means of the salt spray test, depends on the substrate metal, machining and finish of the part, and on the applied film thickness.
Guideline corrosion resistance valuesSubstrate material
NSS to ISO 9227 – Thickness 20 μm – corroded surface < 5%
≥1000 hours
Brass
≥240 hours
Carbon steel
≥240 hours
Aluminium 6082
Chemical resistance
Excellent chemical and oxidation resistance in highly aggressive saline environments. Passes the concentrated nitric acid immersion test (RCA nitric acid test: 42 degree Bé concentrated nitric acid, 30 seconds, ambient temperature).
Chemical compatibility
Chemical compatibility values are referred exclusively to the coating and do not define the corrosion protection of the substrate material. The overall performance of the coated part is highly dependent also on the type and quality of the substrate material. The actual environmental resistance must anyway be tested in the field.
Hydrocarbons (e.g. petrol, diesel, mineral oil, toluene)
Alcohol, ketones (e.g. ethanol, methanol, acetone)
Neutral saline solutions (e.g. sodium chloride, magnesium chloride, seawater)
Dilute reducing acids (e.g. citric acid, oxalic acid)
Acid oxidizing agents (e.g. nitric acid)
Concentrated acids (e.g. sulphuric acid, hydrochloric acid)
Dilute bases (e.g. dilute sodium hydroxide)
Base oxidizing agents (e.g. sodium hypochlorite)
Concentrated bases (e.g. concentrated sodium hydroxide)

Physical properties

Weldability
Cannot be brazed
FerromagnetismHeat treatment
FerromagneticHydrogen embrittlement relief at 160-180°C for 4h
FerromagneticHardening at 260 -280°C for 8h
MAXIMUM CONTINUOUS WORKING TEMPERATURE
260°C
Density
6.3 g/cm3